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Motivation

1. Face recognition in challenging conditions (e.g.,
large distances, low resolutions, varying
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3. The proposed CoNAN approach conditions a
context vector on feature set distribution to
weigh features based on informativeness.
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4. CoNAN outperforms existing methods on
datasets like BTS and DroneSURF for long-range
face recognition.
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Given feature sets Sg and S, compute the
minimum, maximum , mean, variance, mode,
and median along each dimension.

Supervised Contrastive Loss
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Combine with Cp or Cg (classification tokens
from attention module) and DTE (Learnable
Distribution Type Embedding) - This aids in
learning a distribution specific context vector.

Results on DroneSURF

i Trained On DroneSURF
% % . ‘ i Feature Extractor | Active | Passive
> 88 g(S,) ={C,, DTE,, maz(S,), min(S,), mean(S,), i HOG [5] : 33 | 730
2 5 var(S,), mode(S,), median(S,)} | LBP [25] - 416 | 4.16
“-3 : VGGFace [26] 16.67 5.20
3(S,) =1C,. DTE,, max(S,). min(S,), mean(S,), ' COTS [13] : 2188 | 4.16
959) =1Cs g (). | (5) (5) : GAP [19] Arcface [6] | 1667 | 833
____________________________________________________ UH‘T(SQ )? mﬂdﬂ(sﬂ)? me{izﬂn(sﬂ )} ! CoNAN [34] Arcface [6] 17.71 13.54
Probl Stat T GAP [19] Adaface [15] 46.87 7.29
ropiem ostatemen P NAN [34] Adaface [15] 65.62 | 6.25
Quantltatlve ReSUItS MCN [33] Adaface [15] 72.92 8.33
An ideal face feature aggregation technique CoNAN[34] | Adaface[15] | 80.21 | 13.54

Results on BTS 3.1 (BRIAR)

must have the following properties:

Face Included Treatment Face Included Control
1. It should adapt with varying number of Feature Extractor = 10~1 | 1072 | 1072 | 10=* || 10°' | 1072 1072 | 10~*
features in the image-set GAP [19] Arcface [6 537 | 37.01 | 27.28 | 19.48 || 91.17 | 84.82 | 75.26 | 66.21
NAN [34] Arcface [6 55.41 | 39.01 | 26.64 | 18.3 | 91.34 | 8431 729 | 60.37
2. The method'’s performance should not be MCN [33] Arcface [6 55.06 | 39.41 | 28.22 | 19.37 || 92.41 | 87.12 779 | 67.17
conditioned on the availability of high-quality CoNAN Arcface [6] | 60.36 | 43.38 | 32.14 23.14 || 93.36 87.57 80.94 | 71.89
metadata or high dimensional intermediate GAP[19] | Adaface [15]  63.79 | 50.76 | 4081 | 31.7 | 96.17 | 9128 869 | 80.1
feature maps from images NAN [34] | Adaface [15] | 65.29 | 54.44 | 44.96 | 34.86 || 96.06 | 9331 90.16 | 84.82
3 1t chould discount all the non-informative MCN [33] | Adaface [15] | 65.22 | 54.25 | 45.01 | 34.84 || 96.06 | 93.19 89.82 | 85.32
o ature reoresentations and prioritize highl CoNAN Adaface [15] | 67.56 | 56.32 | 46.14 | 36.52 || 96.06 | 93.7 90.27 | 85.72
p p ghly
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4. It should be able to adapt to a variety of face
feature extractors with minimal retraining
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5. The method should prioritize feature
representation in the gallery that closely
matches the distribution of probe features

6. Should add minimal computational
overhead to the existing feature representation
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