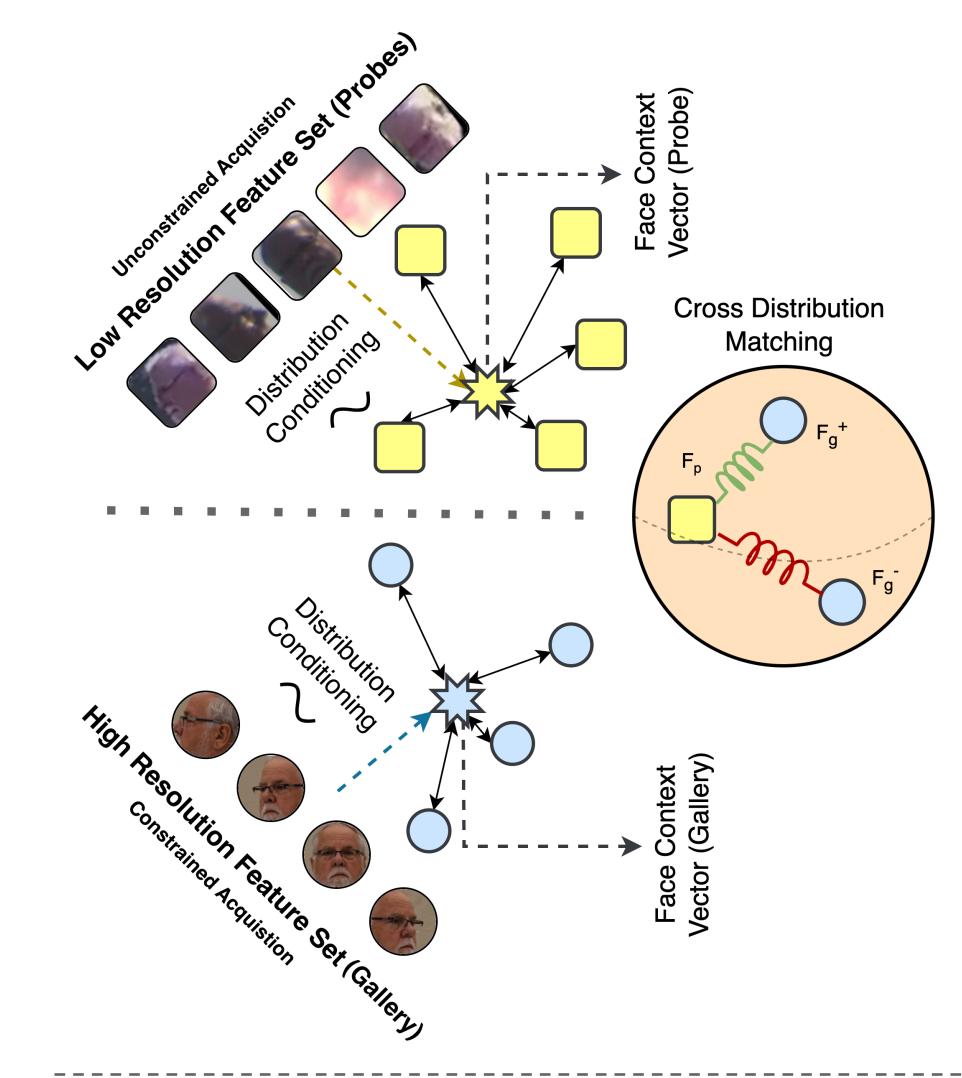

CoNAN: Conditional Neural Aggregation Network For Unconstrained Face Feature Fusion


Bhavin Jawade*, Deen Dayal Mohan*, Dennis Fedorishin, Srirangaraj Setlur, Venu Govindaraju {bhavinja, dmohan, dcfedori, setlur, govind}@buffalo.edu

Motivation

- 1. Face recognition in challenging conditions (e.g., large distances, low resolutions, varying factors) is difficult.
- 2. Traditional methods use metadata or highdimensional features for aggregation, which may not be practical for low-res, long-range faces.

- 3. The proposed **CoNAN approach conditions a** context vector on feature set distribution to weigh features based on **informativeness**.
- 4. CoNAN **outperforms** existing methods on datasets like BTS and DroneSURF for long-range face recognition.

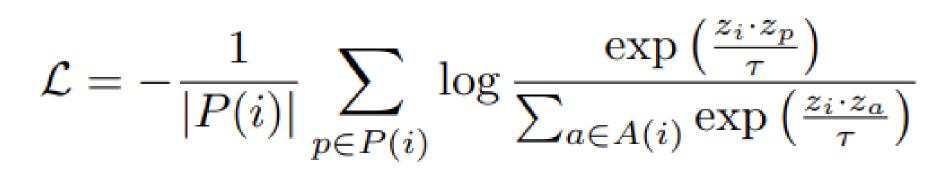
Approach

Given feature sets S_g and S_{p} compute the minimum, maximum, mean, variance, mode, and median along each dimension.

Combine with Cp or Cg (classification tokens from attention module) and DTE (Learnable **Distribution Type Embedding)** - This aids in learning a distribution specific context vector.

 $\vec{q}(S_p) = \{C_p, DTE_p, max(S_p), min(S_p), mean(S_p), mean(S_p$

$$sim(V_g, S_g) = \frac{1}{N} \sum_{i=1}^{N} \frac{V_g \cdot x_i}{||V_g|| \, ||x_i||}$$


IEEE International Joint

Conference on Biometrics

UBSIAD

 $Wg_i = \frac{\exp(sim(V_g, S_g)_i/T)}{\sum_{i=1}^{N} \exp(sim(V_g, S_g)_i/T)}$

Supervised Contrastive Loss

Results on **DroneSURF**

Trained On DroneSURF						
	Feature Extractor Active		Passive			
HOG [5]	-	8.33	7.30			
LBP [25]	-	4.16	4.16			
VGGFace [26]	-	16.67	5.20			
COTS [13]	-	21.88	4.16			
GAP [19]	Arcface [6]	16.67	8.33			
CoNAN [34]	Arcface [6]	17.71	13.54			
GAP [19]	Adaface [15]	46.87	7.29			
NAN [34]	Adaface [15]	65.62	6.25			
MCN [33]	Adaface [15]	72.92	8.33			
CoNAN [34]	Adaface [15]	80.21	13.54			

Problem Statement

An ideal face feature aggregation technique must have the following properties:

1. It should adapt with varying number of features in the image-set

2. The method's performance **should not be** conditioned on the availability of high-quality metadata or high dimensional intermediate feature maps from images

3. It should **discount all the non-informative** feature representations and prioritize highly **discriminative** feature embeddings

$\mathcal{O}(\mathbf{P})$	(P)	P'	(P//	× P//	N N	P//
	$var(S_p)$), mode	$(S_p), med$	$ian(S_p)$ }		

 $\vec{g}(S_g) = \{C_g, DTE_g, max(S_g), min(S_g), mean(S_g), mean(S_g$ $var(S_g), mode(S_g), median(S_g)$

Quantitative Results

Results on **BTS 3.1 (BRIAR)**

		Face Included Treatment			Face Included Control				
	Feature Extractor	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-1}	10^{-2}	10^{-3}	10^{-4}
GAP [19]	Arcface [6]	53.7	37.01	27.28	19.48	91.17	84.82	75.26	66.21
NAN [34]	Arcface [6]	55.41	39.01	26.64	18.3	91.34	84.31	72.9	60.37
MCN [33]	Arcface [6]	55.06	39.41	28.22	19.37	92.41	87.12	77.9	67.17
CoNAN	Arcface [6]	60.36	43.38	32.14	23.14	93.36	87.57	80.94	71.89
GAP [19]	Adaface [15]	63.79	50.76	40.81	31.7	96.17	91.28	86.9	80.1
NAN [34]	Adaface [15]	65.29	54.44	44.96	34.86	96.06	93.31	90.16	84.82
MCN [33]	Adaface [15]	65.22	54.25	45.01	34.84	96.06	93.19	89.82	85.32
CoNAN	Adaface [15]	67.56	56.32	46.14	36.52	96.06	93.7	90.27	85.72

Qualitative Results



4. It should be able to adapt to a variety of face feature extractors with minimal retraining

5. The method should prioritize feature representation in the **gallery that closely** matches the distribution of probe features

6. Should add **minimal computational** overhead to the existing feature representation

* Equal contribution authors

References:

[SupCon]: Khosla, Prannay, et al. "Supervised contrastive learning." Advances in neural information processing systems 33 (2020): 18661-18673.

[NAN]: Yang, Jiaolong, et al. "Neural aggregation network for video face recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. [MCN]: Weidi Xie and Andrew Zisserman. Multicolumn networks for face recognition. arXiv preprint arXiv:1807.09192, 2018.

University at Buffalo The State University of New York

Department of Computer Science and Engineering