Hear The Flow: Optical Flow-Based Self-Supervised Visual Sound Source Localization

Dennis Fedorishin*, Deen Dayal Mohan*, Bhavin Jawade, Srirangaraj Setlur, Venu Govindaraju

University at Buffalo, Buffalo, New York, USA

Abstract

Learning to localize the sound source in videos without explicit annotations is a novel area of audio-visual research. Existing work in this area focuses on creating attention maps to capture the correlation between the two modalities to localize the source of the sound. In a video, oftentimes, the objects exhibiting movement are the ones generating the sound. In this work, we capture this characteristic by modeling the optical flow in a video as a prior to better aid in localizing the sound source. We further demonstrate that the addition of flow-based attention substantially improves visual sound source localization. Finally, we benchmark our method on standard sound source localization state-of-the-art achieve datasets and performance on the SoundNet Flickr and VGG Sound Source datasets

Method	Training Set	$cIoU_{0.5}$	AUC_{cIoU}
Attention [28]	VGGSound 10k	0.160	0.283
LVS* [6]		0.297	0.358
SSPL [30]		0.314	0.369
HTF (Ours)		0.393	0.398
Attention [28]		0.185	0.302
AVObject [1]		0.297	0.357
LVS* [6]		0.301	0.361
LVS [†] [6]	VGGSound 144k	0.288	0.359
HardPos [29]		0.346	0.380
SSPL [30]		0.339	0.380
HTF (Ours)		0.394	0.400

LOCALIZATION

 Localization using similarity of audio features at each visual spatial location

Construct positive and negative regions across samples in a batch and train with contrastive loss, like InfoNCE

$$\operatorname{Pos}_{k} = \frac{1}{|PM_{k}^{p}|} \langle PM_{k}^{p}, S_{k \to k} \rangle$$
$$\operatorname{Neg}_{k} = \frac{1}{|I|} \langle 1 - PM_{k}^{n}, S_{k \to k} \rangle$$

Strong ability to generalize across datasets

and unheard sound classes

Method	Testing Set	$cIoU_{0.5}$	AUC_{cIoU}
LVS* [6]	VGGSS Heard 110	0.251	0.336
HTF (Ours)		0.373	0.386
LVS* [6]	VGGSS Unheard 110	0.270	0.349
HTF (Ours)		0.393	0.400

The proposed OFLN generalizes well even in

Background & Motivation

VISUAL SOUND SOURCE LOCALIZATION

Given a video or image frame, localize the dominant sounding object(s)

CHALLENGES

- Supervised methods require costly manually-labeled bounding boxes of sounding objects
- Creating audio-visual associations for localizing in a self-supervised settings is challenging

MOTIVATION

- Recent works focus on new loss formulations for improving contrastive representation learning
- We show the importance of *informative*

OPTICAL FLOW CROSS-ATTENTION

Construct similarity matrix of visual and optical flow feature representations

- Create cross-attended visual and optical flow features
 - $E = V_v^{ij} \beta^{ij}; \forall i \in [1, m]; \forall j \in [1, n]$
- Add attended flow features to visual feature map and construct *enhanced* similarity map of audio features at each
 - visual-flow spatial location

 $f_{enh} = f_v \oplus E_p$

Results

- State-of-the-art performance on Flickr SoundNet and VGG Sound Source testing datasets
- Using loss functions from previous works, we show incorporating optical flow significantly improves VSSL.

Method	Training Set	$cIoU_{0.5}$	AUC_{cIoU}
Attention [28]	Flickr 10k	0.436	0.449
CoarseToFine [25]		0.522	0.496
AVObject [1]		0.546	0.504
LVS* [6]		0.730	0.578
SSPL [30]		0.743	0.587
HTF (Ours)		0.860	0.634
Attention [28]	Flickr 144k	0.660	0.558
DMC [19]		0.671	0.568
LVS* [6]		0.702	0.588
LVS† [6]		0.697	0.560
HardPos [29]		0.762	0.597
SSPL [30]		0.759	0.610
HTF (Ours)		0.865	0.639
LVS* [6]	VGGSound 144k	0.719	0.587
HardPos [29]		0.768	0.592
SSPL [30]		0.767	0.605
HTF (Ours)		0.848	0.640

the absence of meaningful optical flow

Conclusion

- We explore and usefulness of *informative* priors to train self-supervised visual sound source localization models
- We incorporate optical flow with our novel OFLN, achieving **state-of-the-art results**

priors, like optical flow, to improve VSSL with existing losses

Method

- In a video, oftentimes the objects that are moving are making sounds.
- We model this characteristic with our *Optical* Flow Localization Network (OFLN)

SELF-SUPERVISED TRAINING

Threshold the similarity matrix into positive and negative pseudo masks

 $\mathrm{PM}_{k}^{p} = \sigma(S_{k \to k} - \epsilon_{p})/\tau$ $PM_k^n = \sigma(S_{k \to k} - \epsilon_n)/\tau$

across all VSSL benchmarks

Acknowledgments

This work was supported by the Center for Identification Technology Research (CITeR) and the National Science Foundation (NSF) under grant 1822190.

REFERENCES

Chen, Honglie, et al. "Localizing visual sounds the hard way." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

dcfedori@buffalo.edu

Download our code: https://github.com/denfed/heartheflow