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Attention [28] 0.160 0.283
Learning to localize the sound source in videos LVS* [6 0.297 0.358
without explicit annotations is a novel area of SSPL %32)] VGGSound 10k 0.314 0.369
audio-visual research. Existing work in this area HTF (Ours) 0.393 0.398
focuses on creating attention maps to capture Attention [28] 0.185 0.302
the correlation between the two modalities to AVObject [1] 0.297 0.357
localize the source of the sound. In a video, LVS:: [6] 0.301 0.361
oftentimes, the objects exhibiting movement are Optical Flow Localization y TN LVS' [6] VGGSound 144k 0.288 0.359
the ones generating the sound. In this work, we Network (OFLN) =VS FOSS \ HardPos [29] 0.346  0.380
capture this characteristic by modeling the Visual SSPL [30] 0.339 0.380
HTF (Ours) 0.394 0.400

optical flow in a video as a prior to better aid in

sound source. We further

demonstrate that the addition of flow-based

localizing the
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Strong ability to generalize across datasets

and unheard sound classes
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attention substantially improves visual sound !
source localization. Finally, we benchmark our Method Testing Set cloUps AUC.ros
method on standard sound source localization | Image LVS™ [6] 0.251  0.336
VGGSS Heard 110
datasets and  achieve  state-of-the-art | Encoder 4 HTI'; (Ours) 0373  0.386
performance on the SoundNet Flickr and VGG | LVS™ (6] VGGSS Unheard 110 0270 0.349
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®* Supervised methods require costly

* State-of-the-art performance on Flickr Hpticaltiiow

SoundNet and VGG Sound Source testing

* Create cross-attended visual and optical

manually-labeled bounding boxes of flow features

sounding objects

datasets Ours (HTF)

* Creating audio-visual associations for = VY BY:¥i € [1,m];Vj € [1,n]

®* Usingloss functions from previous works,
localizing in a self-supervised settings is

Conclusion

* We explore and usefulness of informative

. we show incorporating optical flow
°* Add attended flow features to visual

challenging significantly improves VSSL.

feature map and construct enhanced
MOTIVATION

® Recent works focus on new loss

similarity map of audio features at each Method Training Set  cloUy 5 AUC,.7,17

priors to train self-supervised visual sound

, , , . visual-flow spatial location Attention [28] 0.436  0.449
formulations for improving contrastive CoarseToFine [25] 0.522  0.496 source localization models
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representation learnin enh = fo ®FE
P | g | | fenh = [ EEJF p LVS* [6] Flickr 10k 0730 0578 We incorporate optical flow with our novel
* We show the importance of informative genh fi . Agug Vi € m s n SSPL [30] 0.743  0.587 OFLN, achieving state-of-the-art results
priors, like optical flow, to improve VSSL £l ||| Aaugl | HTF (Ours) 0360 0.654 across all VSSL benchmarks
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ownload our code:

https://github.com/denfed/heartheflow




