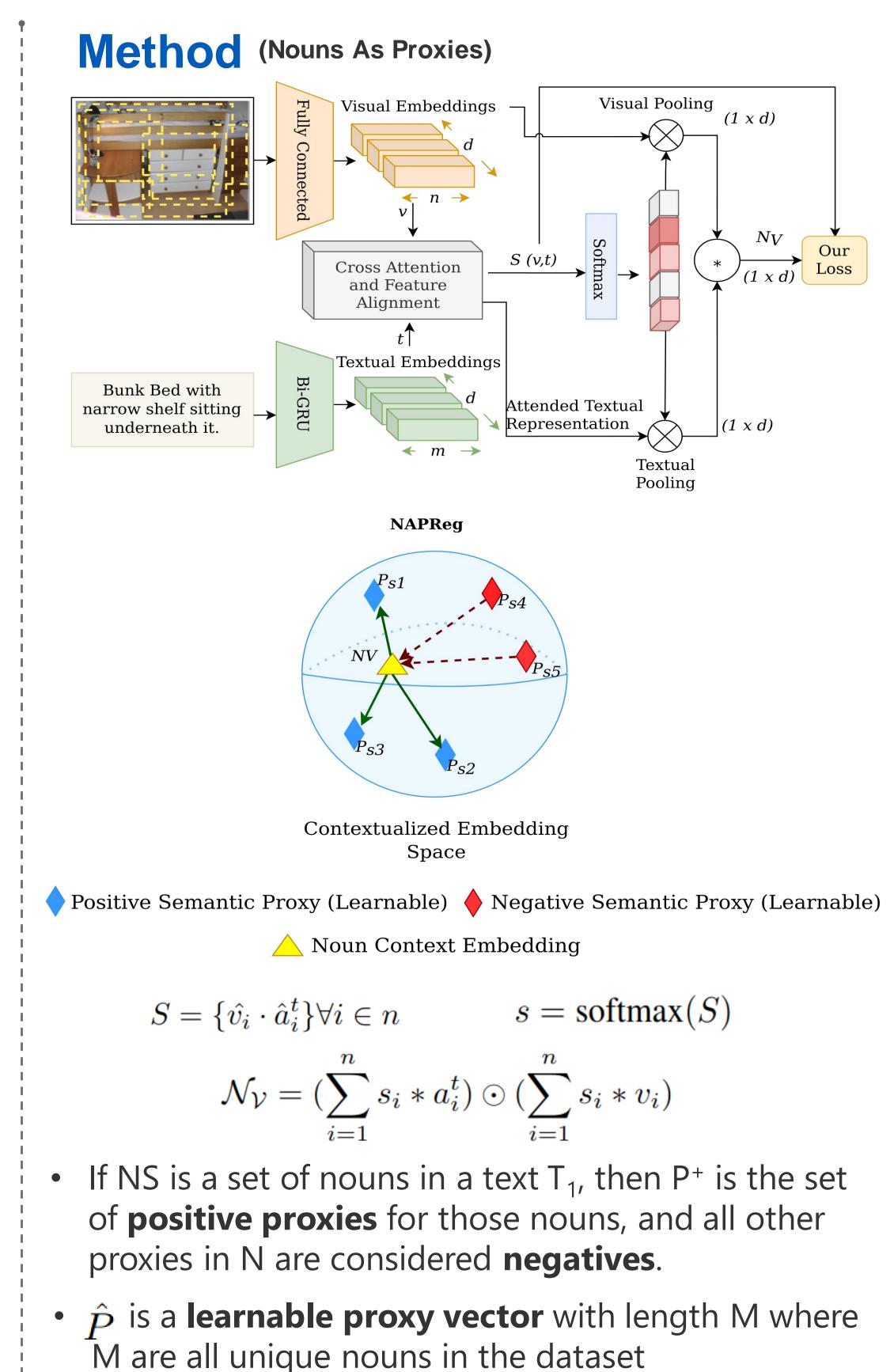
NAPReg: Nouns As Proxies Regularization For Semantically Aware WARVE MAIKALIA Cross-Modal Embeddings

Bhavin Jawade*, Deen Dayal Mohan*, Naji Mohamed Ali, Srirangaraj Setlur, Venu Govindaraju {bhavinja, dmohan, najimoha, setlur, govind}@buffalo.edu

Motivation

- **Text-to-image matching** is the most common form of cross-modal retrieval.
- Existing methods use dual encoders with an attention mechanism and a ranking loss to learn embeddings for retrieval.
- These methods **do not have explicit** supervision to enforce semantic alignment between visual regions and textual words We propose NAPReg, a regularization formulation that projects high-level semantic entities into the embedding space as **shared** learnable proxies. This allows the attention mechanism to learn better word-region alignment and build a more generalized latent representation for semantic concepts. Our method outperforms existing methods in cross-modal metric learning for text-image and image-text retrieval tasks.



Qualitative Results

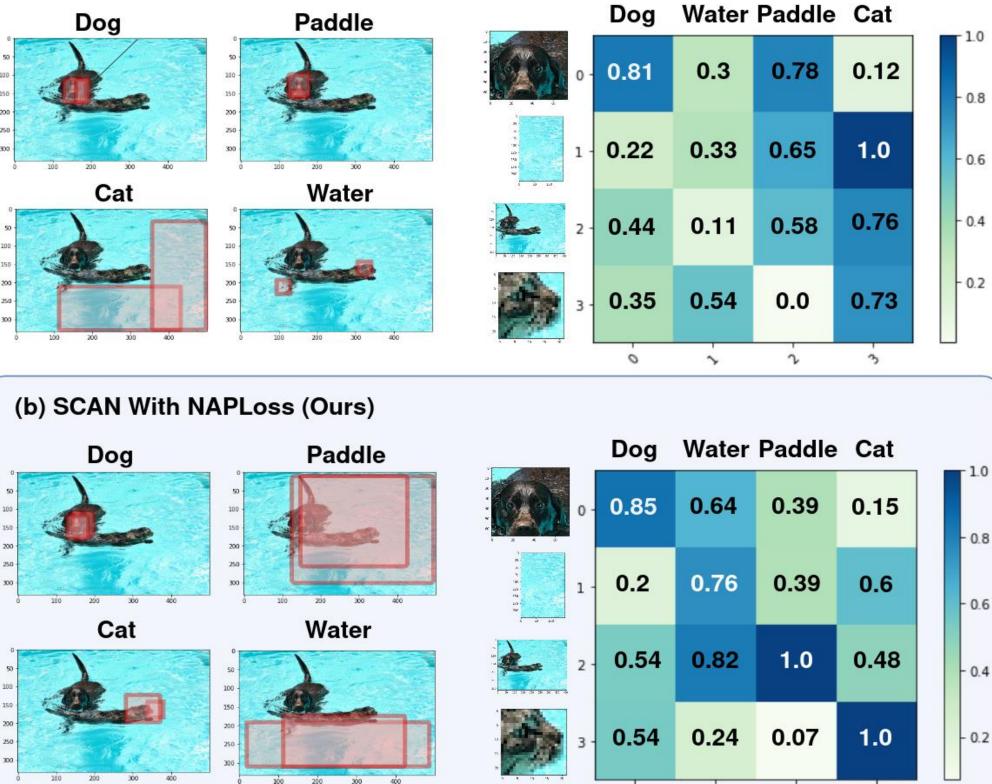
Proxies Dog Cat Paddle Water

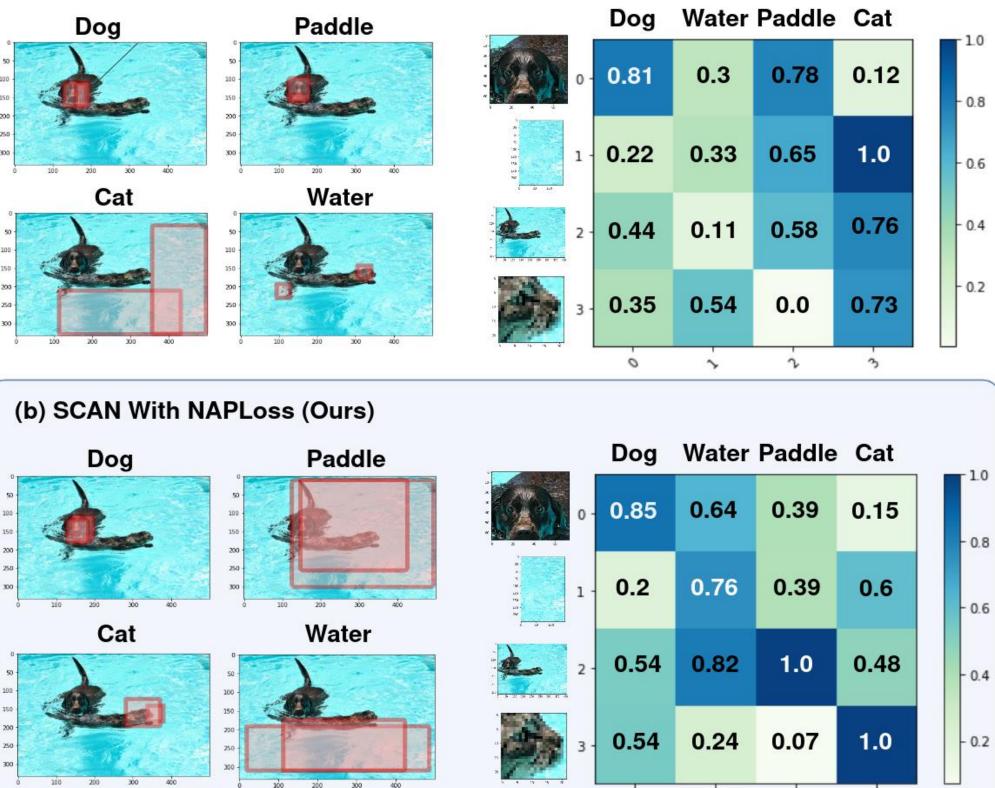
A black dog paddle behind a black cat in a body of water .

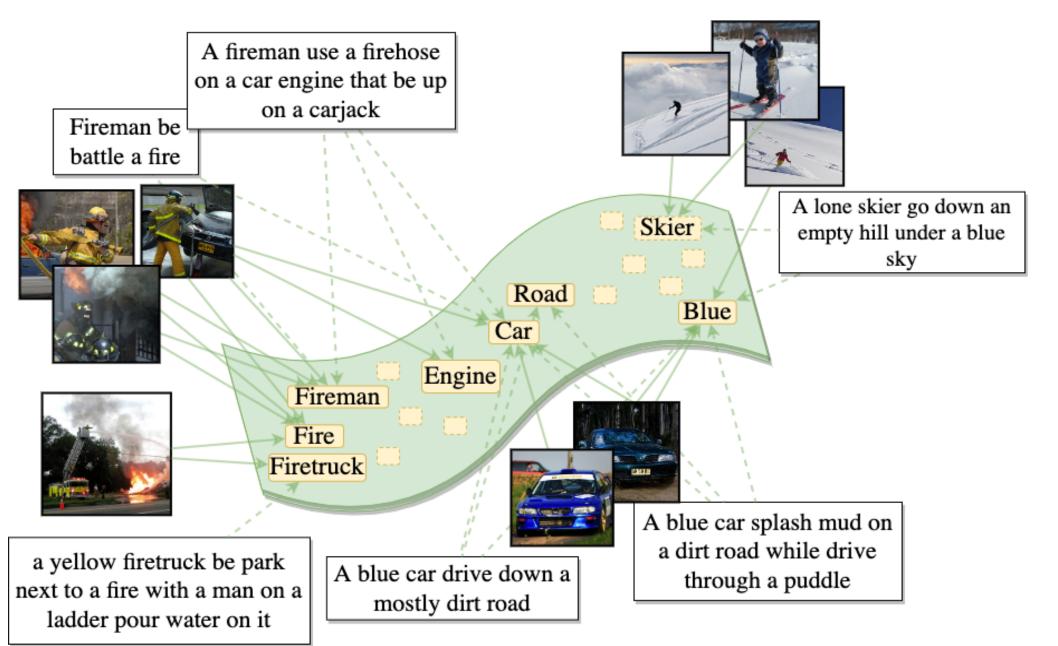
COMPUTER

SOCIETY

(a) SCAN Without NAPReg







- Shows the top 2 regions attended by each proxy word in the image on Left and heatmap between the similarity of selected visually relevant regions and the word proxies on the right
- The similarity score of the visual region containing the cat and the dog is highest for the corresponding word in the text
- The magnitude of the scores has also increased in comparison to the model without the proposed regularization

Ablation Study

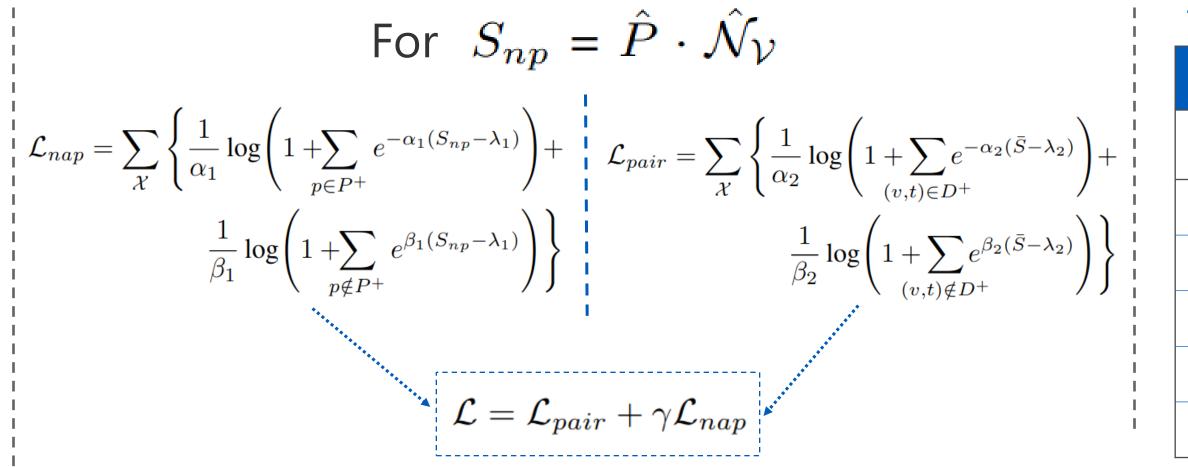
Problem Statement

- Consider, visual features of an image $V = \{v_1, v_2, v_n\}$ and textual features $T = \{t_1, t_2, t_m\}$
- Fine-grained similarity between image and text can be given as:

 $S(V,T) = f(\Phi(V;\theta_i), \Psi(T;\theta_j))$

Stacked Cross Attention (Lee et.al [2])

For each visual location, an attended combination of word representation a (i.e., the attended sentence vector atⁱ, with respect to the ith image region a_t^i) is constructed as defined below:



	Text-to-Image		Image-to-Text			
Gamma	R@1	Rsum	R@1	Rsum		
0	37.7	184.3	52.1	226.4		
0.1	37.6	184.9	54.4	227		
0.2	38.1	186.4	54.5	228.4		
0.3	39.2	188	56.2	229.7		
0.4	38.3	186.5	54.8	228.7		

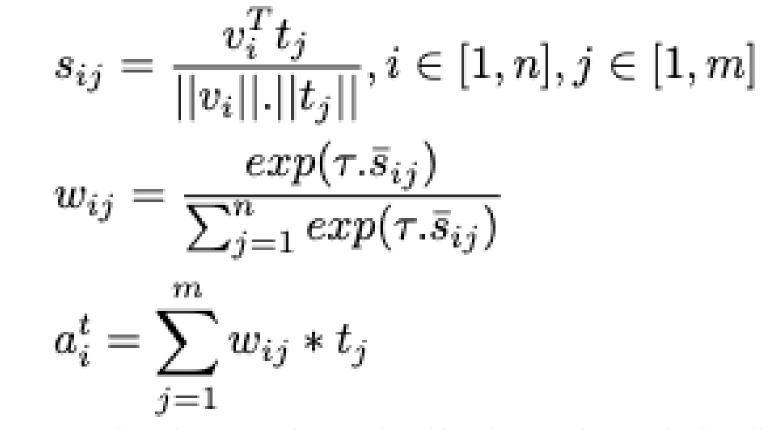
Quantitative Results

Recall@K(%) performance on **MSCOCO dataset**

Method	Loss	Text	<mark>-to-l</mark> m	nage	Imag	ge-to	-Text		
Method	LUSS	R@1	R@5	R@10	R@1	R@5	R@10		
MSCOCO - 1K Evaluation									
IMRAM (Full)	Triplet	61.7	89.1	95	76.7	95.6	98.5		
GSMN (Sparse)	Triplet	60.4	88.7	95	76.1	95.6	98.3		
PFAN (i2t)	Triplet	53.0	84.5	92.6	70.7	94.1	97.8		
SCAN (i2t) [2]	Triplet	54.4	86	93.6	69.2	93.2	97.5		
SHAN	Triplet	62.6	89.6	95.8	76.8	96.3	98.7		
VSE∞	Triplet	61.7	90.3	95.6	78.5	96.0	98.7		
UWML (i2t) [1]	Polyloss	56.8	86.7	93	71.1	93.7	98.2		
NAAF (BiGRU)	Triplet	61.3	90.6	96.0	76.8	95.2	98.2		
SGRAF (SGR) [3]	Triplet	61.4	89.3	95.4	78	95.8	98.2		
SCAN (i2t)	Ours	58.6	87.5	93.8	71.6	94.5	98.2		
SGRAF (SGR)	Ours	63.3	90	95.6	78.7	96.2	98.8		
SCAN (i2t+t2i)	Triplet	58.8	88.4	94.8	72.7	94.8	98.4		
SGRAF (SGR+SAF)	Triplet	63.2	90.7	96.1	79.6	96.2	98.5		
SGRAF (SGR+SAF)	Ours	66.9	91.6	96.5	81.9	97.5	99.2		
MSCOCO-5K Evaluation									
IMRAM (Full)	Triplet	39.7	69.1	79.8	53.7	83.2	91		
SCAN (i2t) [2]	Triplet	34.4	64.2	75.9	46.4	77.4	87.6		
UWML (i2t) [1]	Polyloss	34.4	64.2	75.9	46.9	77.7	87.6		
SGRAF (SGR) [3]	Triplet	40.2	-	79.8	56.9	-	90.5		
SCAN (i2t)	Ours	36.5	66	77.6	48	78.6	88.3		
SGRAF (SGR)	Ours	41.7	71.2	81.5	58	85.1	91.6		
SCAN (i2t+t2i)	Triplet	38.6	69.3	80.4	50.4	82.2	90.0		
SGRAF (SGR+SAF)	Triplet	41.9	_	79.8	57.8	-	91.6		
SGRAF (SGR+SAF)	Ours	43	72.1	82.4	59.8	86	92.6		

Recall@K(%) performance on Flickr30K dataset

	Method	Loss	Text-to-Image		Image-to-Text			
)	Internou	LUSS	R@1	R@5	R@10	R@1	R@5	R@10
_	BFAN	Triplet	50.8	78.4	85.8	68.1	91.4	95.9
	IMRAM	Triplet	53.9	79.4	87.2	74.1	93	96.6
	GSMN (Sparse)	Triplet	53.9	79.7	87.1	71.4	92	96.1
	PFAN (i2t)	Triplet	45.7	74.7	83.6	67.6	90.0	93.8
7	SCAN (i2t) [2]	Triplet	43.9	74.2	82.8	67.9	89	94.4
,	SMFEA	Triplet	54.7	82.1	88.4	73.7	92.5	96.1
	SHAN	Triplet	55.3	81.3	88.4	74.6	93.5	96.9
	VSE∞	Triplet	56.4	83.4	89.9	76.7	94.2	97.7
-	UWML (i2t) [1]	Polyloss	47.5	75.5	83.1	69.4	89.4	95.4
	NAAF (BiGRU)	Polyloss	55.5	81.0	87.9	75.9	93.6	97.7
3	SGRAF (SGR) [3]	Triplet	56.2	81	86.5	75.2	93.3	96.6
-	SCAN (i2t)	Ours	51.4	77.6	85.7	70.8	90.9	95.3
	SGRAF (SGR)	Ours	58.3	83.1	89.2	79.2	95.3	97.7
	SGRAF (SGR+SAF)	Triplet	58.5	83.0	88.8	77.8	94.1	97.4
-	SCAN (i2t+t2i)	Triplet	48.6	77.7	85.2	67.4	90.3	95.8
	SGRAF (SGR+SAF)	Ours	60	84.1	90.2	79.6	95.6	98



The overall cosine similarity between the image-text pair is given by:

 $S(V,T) = rac{1}{n} \sum_{i=1}^n \hat{v_i} \cdot \hat{a_i}^t$

* Equal contribution authors

References

- Wei, Jiwei, et al. "Universal weighting metric learning for cross-modal matching." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.
- 2. Lee, Kuang-Huei, et al. "Stacked cross attention for image-text matching." Proceedings of the European conference on computer vision (ECCV). 2018.
- Diao, Haiwen, et al. "Similarity reasoning and filtration for image-text matching." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 2. 2021.

University at Buffalo The State University of New York

Github

github.com/bhavinjawade/NAPReq

Department of Computer Science and Engineering