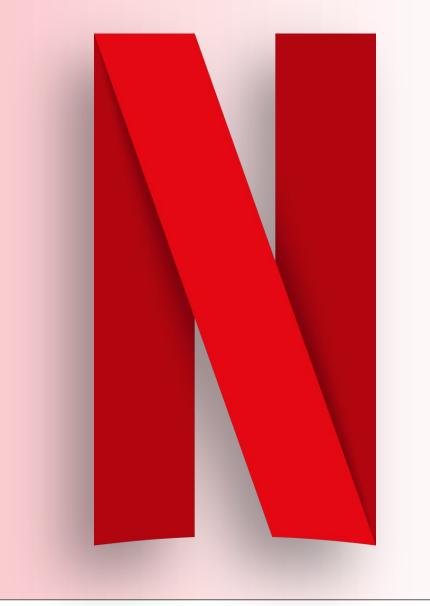
Audio-Visual Representation Learning For Lip-Sync Estimation Through Ranking Augmented Contrastive Training

Bhavin Jawade, Ravi Teja Gadde, Christophe Bejjani, Yinghong Lan NETFLIX Research



Problem Statement

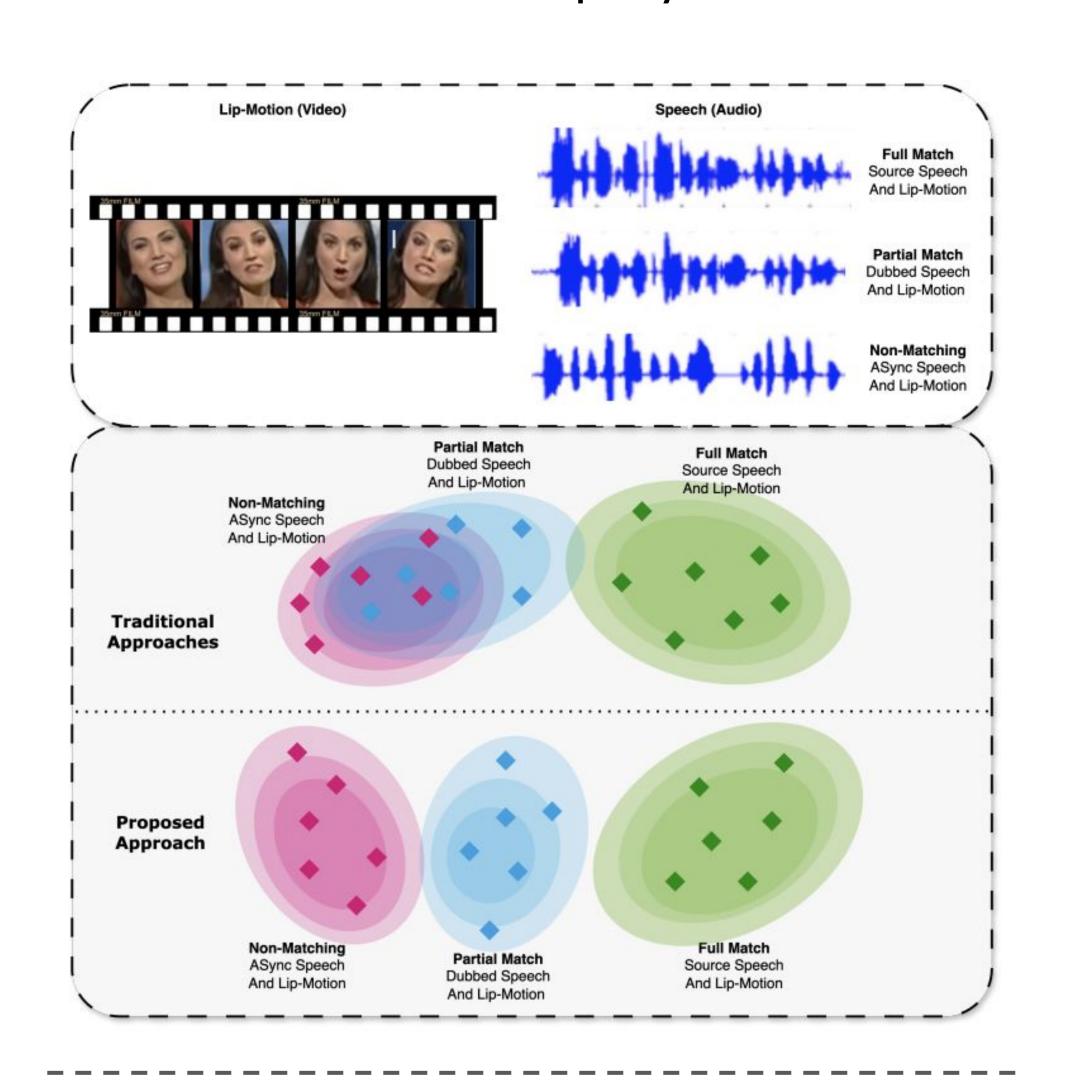
★ Estimate quality of lip-sync between a Video (Lip-Motion) and Audio - (Speech)

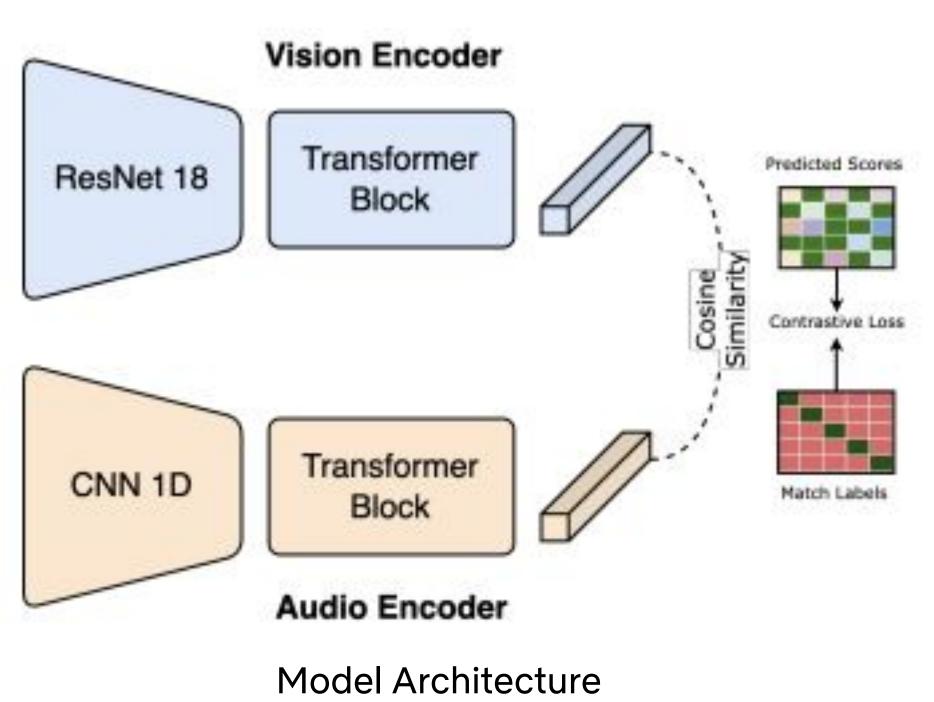
Traditional Lip-Sync Models

- ★ Trained contrastively to align perfectly synced audio-videos.
- ★ Push apart all other forms of audios.
- ★ Effective at distinguishing perfect-sync from imperfect sync.

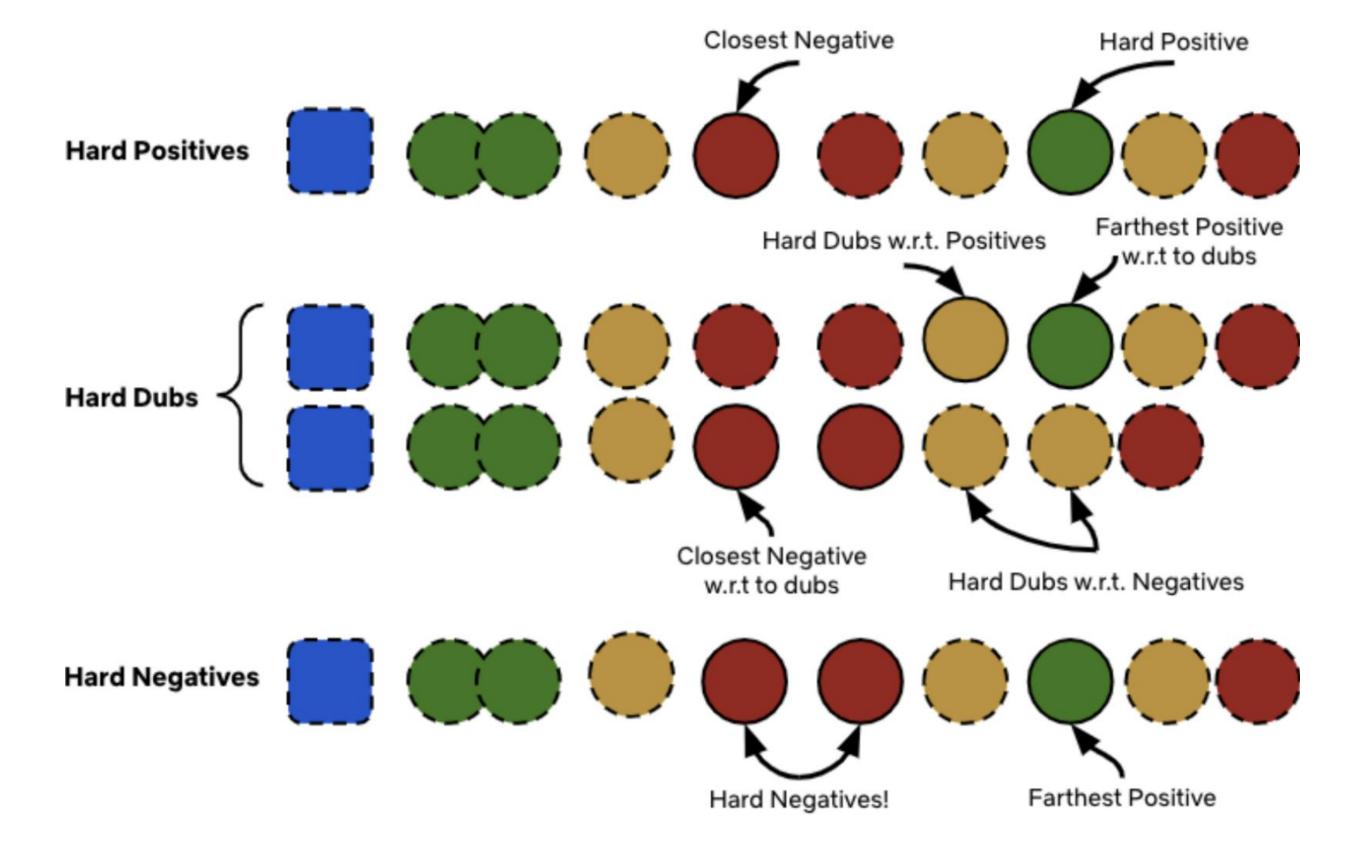
Limitations

- ★ Ineffective at detecting degrees of sync
- ★ Unable to effectively rank dubbed content based on lip-sync





Method



Ranking Supervised Multi-Similarity (RSMS)

Hard positive audios: Positive audio samples that are closer to the nearest negative or nearest dubbed audio within a margin for the given video

$$\hat{S}_i^p = \{ p \mid S(v_i, p) - \lambda < \max(S(v_i, n), S(v_i, d)) \}$$

Hard negative audios: Negative audio samples that are closer than the farthest positive or farthest dubbed audio within a margin for the given video.

$$\hat{S}_i^n = \{ n \, | \, S(v_i, n) + \lambda > \min(S(v_i, p), S(v_i, d)) \}$$

Hard dubbed audios with respect to positives: Dubbed audio samples that are closer than the farthest positive audios

$$\hat{S}_i^{nr} = \{ d \mid S(v_i, d) + \lambda_d > \min(S(v_i, p)) \}$$

Hard dubbed audios with respect to negatives: Dubbed audio samples that are farther away from the closest negative audio

$$\hat{S}_i^{pr} = \{d \mid S(v_i, d) - \lambda_d < \max(S(v_i, n))\}$$

$$L_i^p = \log\left(1 + \sum e^{-\alpha(\hat{S}_i^p - \sigma)}\right) L_i^n = \log\left(1 + \sum e^{\beta(\hat{S}_i^n - \sigma)}\right)$$

$$L_i^{pr} = \log\left(1 + \sum e^{-\gamma(\hat{S}_i^{pr} - \sigma)}\right) L_i^{np} = \log\left(1 + \sum e^{\delta(\hat{S}_i^{nr} - \sigma)}\right)$$

$$L_{RSMS} = \frac{1}{B} \sum_{i=1}^{B} \left\{ \frac{1}{\alpha} \cdot L_i^p + \frac{1}{\beta} \cdot L_i^n + \frac{1}{\gamma} \cdot L_i^{pr} + \frac{1}{\delta} \cdot L_i^{np} \right\}$$

Datasets

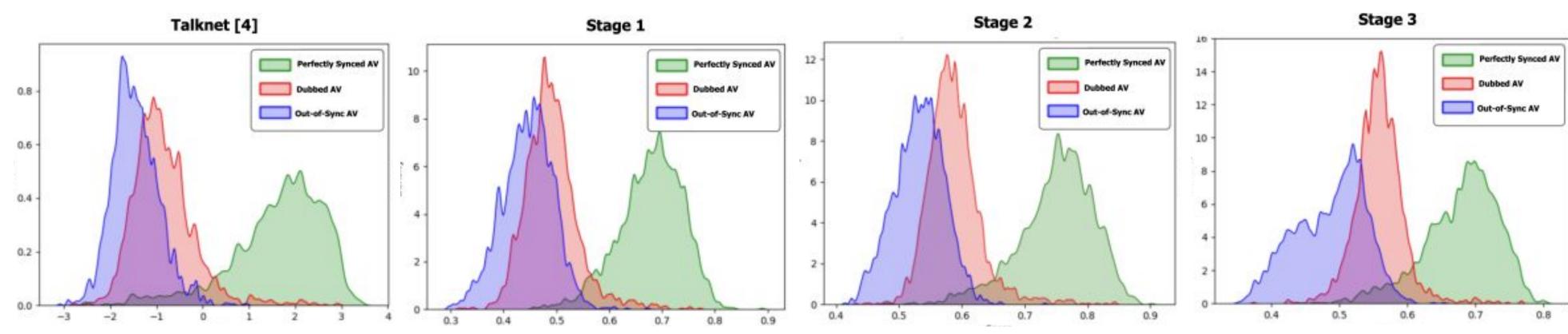
- ★ Training Dataset: For pretraining VoxCeleb dataset, consisting of 862,885 videos (1,868 hours) widely employed in speaker and face recognition tasks. For fine-tuning, we used a 37-hour internal Netflix dataset with 66,847 videos featuring real-world partial-syncs from dubbed videos in multiple languages.
- ★ Evaluation Dataset: Curated disjoint set of 5,742 Netflix videos
 - (i) 1,900 videos with non-matching audios (outof-syncs)
 - (ii) 1,900 videos with dubbed audios (partial-syncs)
 - (iii) 1,900 videos with original audios (perfect-syncs).

The dataset spans 10 languages, including English, Brazilian Portuguese, German, Spanish, French, Hindi, Italian, Japanese, Russian, and Turkish

Comparison To SoTA

Zero-shot performance on Netflix Dubbed Content

	Source Vs Dubs (S/D)		Source Vs Out-	of-syncs (S/O)	Dubs Vs Out-of-syncs (D/O		
Method	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC	
SyncNet	70.48%	75.52%	71.38%	76.83%	58.16%	60.81%	
VocaLiST	75.29%	79.70%	91.32%	94.20%	60.29%	72.28%	
MTDVocaLiST	77.38%	83.48%	93.55%	96.72%	64.55%	74.76%	
TalkNet	92.78%	95.61%	96.20%	98.43%	70.89%	77.69%	
Ours Densit	93.85% y plot of score o	97.68% distribution fo	98.28% or positives, dubs ar	99.73% nd negatives on (74.92% our evaluation da	82.73% taset	



Comparison (AUC) of contrastive losses for lip-sync ranking

Does Fine-tuning on Real-Dubs Help?

Method	Rank Priors	S/D	S/O	D/O	Method	Dataset	D/O	
		-	_		Method		Acc	AUC
InfoNCE	X	93.22	95.48	67.4		Synthetic		
MultiSimilarity	×	95.38	98.29	74.64	Zero-Shot	Shifted-Sync	74.92%	82.73%
RINCE	\checkmark	95.47	98.35	76.95		Real Dubbed		
RSMS (Ours)		97.68	99.73	82.73	Fine-Tuned	Audio	81.31%	88.60%

Selected References

[TalkNet] - R. Tao, Z. Pan, R. K. Das, X. Qian, M. Z. Shou, and H. Li, "Is someone speaking? exploring long-term temporal features for audiovisual active speaker detection," in Proceedings of the 29th ACM international conference on multimedia [RINCE] - D. T. Hoffmann, N. Behrmann, J. Gall, T. Brox, and M. Noroozi, "Ranking info noise contrastive estimation: Boosting contrastive learning via ranked positives," in Proceedings of the AAAI Conference on Artificial Intelligence [SyncNet] - J. S. Chung and A. Zisserman, "Out of time: Automated lip sync in the wild," in Computer Vision – ACCV 2016 Workshops (C.-S. Chen, J. Lu, and K.-K. Ma, eds.), (Cham)